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1 Introduction

In this paper, we identify and characterize the key economic mechanisms driving mortgage

markets and housing tenure choice, many of which are closely-linked and thus diffi cult to dis-

entangle in the data or in quantitative exercises. We take an analytic approach, developing a

tractable model of mortgage markets with heterogeneous agents. The model admits a series

of closed-form expressions which describe the relevant economic mechanisms, as well as their

interplay. We uncover several new insights which may inspire empirical work, and we ground

already-established insights in a series of tractable expressions. An additional advantage of our

approach is that it enables us to study loan-to-value (LTV) regulation incorporating housing

tenure choice. This is important because it allows us to show that optimal LTV regulation

should have procyclical elements because of concerns related to home affordability. Such ele-

ments counterbalance the countercyclical regulation required by default externalities, fire sales,

and government guarantees.

We propose a model of collateralized lending with households, who are heterogeneous in

their expected income growth, and perfectly competitive lenders, who can observe household

heterogeneity. In the first period, households decide whether to rent or purchase a home, which

requires mortgage credit. Both house prices and future income depend on an aggregate business

cycle shock, and, following adverse shocks, some households must default on their mortgages.

Default probability is a key driver of the model, and, as we shall show, it operates somewhat

differently for recourse versus non-recourse loans. The mechanisms at play become evident in a

series of closed-form expressions for the following endogenous variables: mortgage rates, credit

ceilings, households’housing tenure choice, LTV, loan-to-income (LTI) ratios, and the intensive

and extensive margins of credit.

In particular, we characterize two extensive margins of credit. The first extensive margin

is supply driven. For risky borrowers, default is so likely that, at a given LTV and LTI, there

is no feasible interest rate at which the lender would extend credit to the borrower. Thus,

lenders ration credit. The second extensive margin is demand driven. It emerges because of a

household’s preference for renting versus homeownership. That is, households may choose not

to participate in mortgage markets because renting is relatively more attractive, not because

they cannot obtain a loan. The two extensive margins are not disjoint and are affected by many

of the same factors.

Our model generates several predictions, some of which are new, and others of which are

already-established, but grounded in a series of tractable expressions. These are our three most

novel predictions:
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1) First, with respect to credit supply, we characterize and analyze the properties of what

Geanakoplos (2014) calls “the credit surface", that is, the interest rate offered by lenders as a

function of the LTV, the LTI, and the income growth of the borrower. Low risk-free rates (which

translate into a lower cost of funds for the lenders) lead to lower mortgage rates, especially for

high-LTI households. Moreover, high-LTI households suffer the greatest credit tightening in

response to reduced expectations of house price growth. Ehrmann and Ziegelmeyer (2014) and

Gerlach-Kristen and Lyons (2014) provide recent cross-country evidence suggesting that the

impact of house prices, monetary policy and income shocks on credit depends on LTV and

LTI ratios. Lax monetary policy leads to higher leverage ratios, lower mortgage spreads, and

higher default risk in the pool of financed borrowers. This result suggests that the period of

low interest rates in the run-up to the recent financial crisis may have been related to the high

LTV ratios that lenders accepted over that period, an argument supported by evidence from

Jimenez et al. (2014).

Finally, increases in the cost of default for lenders, such as the large fines several U.S.

banks have paid for delinquent loans they issued during the housing boom, translate into

tighter lending conditions. The pass-through is stronger when monetary policy is lax. This

may explain why lending conditions in mortgage markets have been tight during the current

recovery.

2) Second, with respect to credit demand, higher expectations for house price growth en-

courage more households to apply for a mortgage provided the rent-to-price ratio does not

react too steeply to these expectations. Otherwise, it is possible that the home unaffordability

resulting from this increase in expectations will discourage mortgage applications. Moreover,

households demand a higher LTV when lenders’loan recovery rate is high, as this recovery rate

is passed onto borrowers in the form of lower mortgage rates.

3) Third, with respect to the structure of the loan contract, non-recourse mortgages lead to

a demand for larger LTVs than recourse mortgages, since they allow a convex gamble on house

prices where the maximum loss is the downpayment. Relatedly, non-recourse mortgages should

correlate with higher default rates, a prediction documented by Ghent and Kudlyak (2011).

Furthermore, non-recourse mortgages should also correlate with reduced ex-post heterogeneity

both in downpayments and in mortgage costs, since lenders place smaller weight on measures

of borrower quality (such as FICO scores) than with recourse mortgages. However, in non-

recourse jurisdictions, a tighter credit ceiling and higher mortgage rates lead to greater ex-ante

heterogeneity in the demand for credit. In this situation, households with lower present income

but higher income growth suffer the most and instead decide to rent.
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Besides making predictions about mortgage markets in the positive sense, our model also

allows us to study optimal LTV regulation from a normative perspective. Consider a regulator

who chooses an LTV cap to maximize households’utility, taking into account that some house-

holds will be renters and that lenders need to break-even. Moreover, the regulator incorporates

negative externalities from larger default rates associated with high LTV loans. For example,

these externalities are pecuniary externalities or lost government revenue from loan guarantees

or bank bailouts. Neither households nor lenders internalize these default externalities, and thus

there is a role for government regulation. We show that optimal LTV policy should balance

the opposing forces of access to homeownership and the costs of default. The macroprudential

literature has shown that the negative externalities justify countercyclical LTV regulation. Our

value added is to demonstrate why optimal LTV regulation should have some procyclical ele-

ments, even taking into account the costs of default. Specifically, during an expansion, home

affordability concerns (which can be measured from price-to-rent ratios) rise. Moreover, the

optimal LTV depends directly on lenders’cost of funds, which suggests a close link between

monetary policy and financial regulation, and on the costs of default, which suggests that

optimal LTV policies should condition on factors like lenders’loan recovery rate.

In terms of model, the paper most closely related to ours is Eaton and Gersovitz (1981).

They show the existence of credit ceilings in a model without the asymmetric information that

Stiglitz and Weiss (1981) use in their work on credit rationing. We differ from Eaton and

Gersovitz (1981) because they focus on strategic default (lenders do not have the ability to take

possession of a borrower’s assets in case she defaults on payments), and on non-collateralized

debt. We focus on non-strategic default (default is negative net worth) and on collateralized

debt with recourse. Thus, in our model, the value of the collateral works along with borrower

quality to determine which borrowers have access to credit.

In terms of content, we connect with a variety of literatures. First, our model complements

the growing literature analyzing optimal macroprudential regulation. This literature often

models housing markets using a DSGE approach based on Iacoviello (2005), where house prices

are endogenous, there are pecuniary externalities, and there is only one borrower; that is, the

models focus only on the intensive margin of credit. Korinek and Mendoza (2014) is a recent

survey of the literature on pecuniary externalities, and Lambertini et al. (2013), or Rubio and

Carrasco-Gallego (2014) are recent studies of optimal LTV regulation.1 We highlight a channel

absent in those papers: the extensive margin, and how the welfare benefits associated with

homeownership push optimal regulation to consider affordability problems, thereby relaxing

LTV constraints in periods of high price-to-rent ratios to allow more households to obtain a

1Lin (2014) is a recent study of optimal LTV in a two-period model of corporate debt with only one bank.
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mortgage.

Second, we complement quantitative models of mortgage markets. For example, Campbell

and Cocco (2015) solve a model of exogenous house prices with a household who borrows at

endogenously determined mortgage rates and can default. Corbae and Quintin (2015) study a

model of heterogenous agents with exogenous house prices. They show that exogenous changes

in approval standards increased the number of high-leverage loans prior to the crisis, and

this can explain over 60% of the rise in foreclosure rates. Chatterjee and Eyigungor (2015)

endogenize house prices in a model of heterogenous agents and long-term debt, studying three

shocks that can account for the dynamics of house prices and foreclosures. Gete and Zecchetto

(2015) study quantitatively how loan guarantees affect credit supply and demand in a model

with endogenous house prices and rents. Our theoretical analysis provides new insights that

complement this quantitative literature.

Finally, we also relate to models of household debt and rationing. Zinman (2015) provides

an excellent survey of this ample literature. Most of this literature is based on models with

asymmetric information, like Harrison et al. (2004), who propose a signaling model of LTV

ratios and default risk.

The rest of the paper is organized as follows. Section 2 presents the model. Sections 3, 4

and 5 characterize, respectively, credit supply, credit demand, equilibrium in mortgage markets

and housing tenure choice. Section 6 studies optimal LTV regulation. Section 7 analyzes

non-recourse mortgages. Section 8 concludes. Appendix I contains the parametrization of the

model. Appendix II has the proofs.

2 The Setup

It is a two-period model with lenders and heterogeneous households. House prices and rents

are exogenous. Real house price growth across periods is governed by an aggregate business

cycle shock ε which follows a Pareto distribution on [ε,∞) with cumulative density function

F (ε) = 1−
(
ε
ε

)2
. Second-period house prices are

p′ (ε) = pBε, (1)

where B is a parameter. We denote period-two variables with a prime, and the expected value

of the aggregate shock as

ε0 ≡ E[ε] = 2ε.
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2.1 Households

There is a continuum of households. They differ in income growth across periods (A) ,

which is distributed according to the cumulative density function G(A) with lower bound A

and probability density function g(A). For example, A is human capital. Households know

their type. In period 1, all households have the same income (y) . Second-period income for a

household of type A is also subject to the business cycle shock:

y′ (A, ε) = yAε. (2)

Households have quasilinear utility. In period 1, they choose to rent (I = 0) or buy (I = 1)

housing (h if owned, hr if rented). Homeowners have access to mortgage credit. There is a

homeownership premium (k) to capture factors such as intrinsic preferences for homeownership,

the favorable tax treatment of owning a house, or transaction costs in the rental market (Hen-

derson and Ioannides 1983). In period 2, households enjoy non-housing consumption (c′ or c′r) ,

which serves as a numeraire. Household preferences are

u (c, I, h) = I [k log (h) + βE[c′]] + (1− I) [log (hr) + βE[c′r]] , (3)

where β is the discount factor.

When considering the decision whether to rent or own, households compare the utility from

the two decisions. We define the value function of a renter of type A as W (A),

W (A) = max
{hr,dr,c′r}≥0

log (hr) + βE[c′r] (4)

s.t.

rhr + dr = y, (5)

c′r = y′ +RDdr, (6)

where dr are deposits which return gross interest RD, and r is the rental price of housing.

Renters do not have access to mortgage credit.

As a benchmark we analyze recourse mortgages. That is, in case of a borrower’s default, the

lender can go after the borrower’s house and other assets, or she can sue to have borrower’s wages

garnished. In Section 7 we analyze non-recourse mortgages. With a non-recourse mortgage,

the lender can only seize the house in the event of default.

We denote by m the mortgage borrowings, and by R (A,m) the mortgage rate, which, as
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we will discuss below, it is a function of the borrower’s type and the loan size. There is a

loan-to-value limit imposed by the government, Θ. There is also an endogenous credit limit

imposed by lenders which we will discuss in Section 3. Our approach to the household’s problem

follows Eaton and Gersovitz (1981) in that households internalize the credit surface R(·) and
the regulatory cap Θ, but do not internalize the lender’s credit ceiling, θ̄(A). Otherwise no loan

application would be rejected since, by construction, households would not apply for LTVs

larger than what lenders would grant.

The value function of an owner with income growth A is

U(A) = max
{h,m,d,c′}≥0

k log (h) + βE [c′] (7)

s.t.

ph+ d = y +m, (8)
m

ph
≤ Θ, (9)

c′ = max
{

0, y′ +RDd+ p′h−mR (A,m)
}
. (10)

The max operator in (10) captures how a household who cannot cover her mortgage debt will

default and consume nothing.2 ,3

Whether households default depends on the business cycle. For a household of type A, bor-

rowing m, at rate R, and with collateral h in a recourse mortgage, we denote by ε∗ (A,R,m, h)

the threshold for the aggregate shock such that the household defaults for any business cycle

below the threshold. The threshold ε∗ (A,R,m, h) is implicitly defined as

y′ (A, ε∗) + p′ (ε∗)h = mR (A,m) . (11)

Or, using (1) and (2) ,

ε∗ (A,R,m, h) =
mR (A,m)

phB + yA
, (12)

where we are already using the result that households with recourse mortgage debt do not hold

deposits if they face mortgage rates higher than deposit rates (R (A,m) > RD). This will be

the case as long as the household has some positive probability of default (ε∗ (.) > ε) .We show

both results in Lemma 1.4

2Alternatively, we could assume that households who default consume some minimum consumption level
provided by a government’s transfer. The results would be very similar.

3Gerardi et al. (2013) provide evidence that strategic default during the 2007-2009 recession was relatively
rare.

4In our framework, because the support of the shock ε is bounded below, it is possible for a household to
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We can define the difference between the owner and renter’s utility for a household of type

A as

z(A) = U(A)−W (A). (13)

The household will own if z(A) > 0, provided that the household can obtain credit from the

lender, as we discuss below.

2.2 Lenders

There is a continuum of identical, risk-neutral lenders which compete loan by loan and

can see the borrower’s type. Lenders only originate mortgages that in expectation allow them

to cover their cost of funds RD. When making their origination decisions, lenders understand

that households may default. The foreclosure technology is ineffi cient so that the lender only

recovers a fraction γ < 1 of the house value. The recovery rate γ on the defaulter’s assets

captures how the foreclosed property may require significant repairs, or how the lender might

suffer lawsuits or future regulatory burdens because of default.5

When the deadweight loss of default is high (γ ≤ 0.5), the revenue of the lender is strictly

decreasing in the loan interest rate as long as there is positive probability of the borrower’s

default. In that case, decreasing default probability by reducing the mortgage rate increases

the revenue to the lender. Thus, for γ ≤ 0.5, lenders will lower the mortgage interest rate until

the borrower’s default probability is zero, and they will only extend mortgages with no default.6

Since we want to analyze equilibria with default, we focus on γ > 0.5.

Lenders’expected profits from lending m to a borrower of type A with collateral h are

E[Π (h,m,A)] =

∫ max{ε,ε∗(.)}

ε

γ[hp′(ε) + y′ (A, ε)]dF (ε) +

∫ ∞
max{ε,ε∗(.)}

mR (A,m) dF (ε)−RDm.

(14)

The first term of the right-hand side is the expected recovered value of a defaulter’s assets,

since the household defaults for business cycles worse than ε∗ (A,R,m, h) . The second term is

the loan’s expected payout if the borrower repays. The last term is the cost of funds for the

lender. Perfect competition among lenders implies that lenders’expected profits on borrower

A should be zero:

E[Π (h,m,A)] = 0. (15)

have zero default probability, and thus mortgages would not command a spread over lender’s cost of funds.
Bounded support is a feature that helps us solve the entire model in closed form.

5Examples of the latter are the fines on Bank of America and Citibank in the summer of 2014.
6The proof of Proposition 1 discusses this result.
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3 Credit Supply

Mortgage supply reacts via changes in both mortgage rates and credit ceilings. Proposition

1 characterizes the key elements in credit supply. There is a maximum credit limit m̄(h,A)

which lenders would provide to a borrower of type A posting collateral h. Above the credit

limit there is no mortgage rate at which lenders would extend credit as default is too likely.

Below the credit limit, lenders propose an interest rate function R(A, θ, λ) that is a function of

the borrower’s expected future income (A), of the LTV (θ), and of the loan-to-current-income

ratio (LTI), which we denote λ=m
y
. The credit limit can also be expressed as the maximum

LTV at which the lender is willing to extend credit. We denote this endogenous LTV ceiling as

θ̄(A, λ).

Proposition 1 There exists a maximum mortgage size that a borrower of type A with collateral
h can receive:

m̄(h,A) =
ε0γ(phB + yA)

RD
. (16)

Likewise, for a borrower of type A with LTI ratio λ, there is a maximum LTV ratio

θ̄(A, λ) =
ε0γλB

λRD − ε0γA
(17)

above which the lender would not lend.

For all m ∈ (0, m̄(h,A)) there is a mortgage rate satisfying the lender’s zero profit condition

(15). In particular,

R(A, θ, λ) =


(2γ−1)(λB+θA)2ε2

λθ(ε0γ(λB+θA)−RDλθ) if max {ε, ε∗ (.)} = ε∗ (.)

RD if max {ε, ε∗ (.)} = ε

 . (18)

Moreover, the lender’s expected revenue

Ω (h,A,m,R) =

∫ max{ε,ε∗(.)}

ε

γ[hp′(ε) + y′ (A, ε)]dF (ε) +

∫ ∞
max{ε,ε∗(.)}

Rm dF (ε)

is increasing, concave, and bounded above in mortgage rates R.
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3.1 The Credit Ceiling

The credit ceiling comes from the fact that lender’s expected revenue Ω(.) is bounded above

in mortgage rates R(.). The credit ceiling m̄(h,A) is defined by

Ω(h,A, m̄(h,A), R) = RDm̄. (19)

Lending above m̄(h,A) makes default too likely, and lenders cannot balance cost with expected

revenue from the borrower. In that case, lenders ration credit. Proposition 2 summarizes the

main properties of the credit ceiling and Figure 1 displays them. Figure 1 is based on the

parameter values in Table 1, and the details of the calibration are presented in Appendix I.

Proposition 2 The LTV ceiling, θ̄(A, λ), has satisfies the following properties:

∂θ̄

∂A
> 0,

∂θ̄

∂B
> 0,

∂θ̄

∂RD
< 0,

∂θ̄

∂γ
> 0,

∂θ̄

∂λ
< 0,

with the following interactions:

∂2θ̄

∂γ∂RD
< 0,

∂2θ̄

∂B∂A
> 0.

Lenders accept higher leverage ratios when borrowers have better income growth (higher

A), or higher expected house price growth (higher B). Borrowers’life-time income depends on

y and A; both raise the credit ceiling in (16) .

A lower cost of funds for lenders, which is directly related to monetary policy, allows lenders

to extend credit to riskier borrowers (higher LTV). Thus, there is a direct link between monetary

policy and leverage ratios in mortgage markets. This result suggests that the period of low

interest rates in the run-up to the recent financial crisis may have been related to the high LTV

ratios that lenders accepted over that period.

Reductions in the recovery rate (γ) can be interpreted as increases in the penalties the

lenders face in case of loan default. For example, during the last several years, lenders have had

to pay fines for non-performing loans that they granted. As ∂θ̄
∂γ

> 0 shows, lenders translate

those fines into tighter lending conditions. Interestingly, the pass-through from recovery rates

to credit conditions is stronger when monetary policy is relatively lax, ∂2θ̄
∂γ∂RD

< 0. Intuitively,

loose monetary policy makes it easier for lenders to break even on average, so that a reduction

in default costs makes them even more willing to extend credit.
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The result ∂θ̄
∂λ
< 0 says that households with higher LTI ratios have more diffi culty accessing

credit. The property ∂2θ̄
∂B∂A

> 0 says that positive house price growth benefits the leverage

capacity of high-income-growth households more than of low-growth households. Gerlach-

Kristen and Lyons (2014) provide empirical confirmation that the impact of house prices and

income shocks on credit depends on LTV and LTI ratios.

3.2 The Credit Supply Surface and Mortgage Spreads

Equation (18) characterizes the credit surface, that is, the interest rate offered by lenders

as a function of the LTV, LTI and the income growth of the borrower. Geanakoplos (2014)

provides evidence that the credit surface in mortgage markets is a very important object in

the economy as a whole. The next proposition discusses the most important and interesting

properties of the credit supply surface.

Proposition 3 As long as there is some positive default probability (max {ε, ε∗ (.)} = ε∗ (.)) ,

then ∂R
∂A

< 0, ∂R
∂λ
> 0 and ∂R

∂θ
> 0. Moreover,

∂R

∂λ
=

(
θ

λ

)2
A

B

∂R

∂θ
, (20)

∂R

∂λ
= −A

λ

∂R

∂A
. (21)

∂2R

∂A∂RD
< 0,

∂2R

∂λ∂RD
> 0,

∂2R

∂θ∂RD
> 0. (22)

∂2R

∂A∂B
> 0,

∂2R

∂λ∂B
< 0,

∂2R

∂θ∂B
< 0. (23)

∂2R

∂A∂γ
> 0,

∂2R

∂λ∂γ
< 0,

∂2R

∂θ∂γ
< 0 if γ >

3RDλθε0(λB + θA)− 4
(
RDλθ

)2

ε20(λB + θA)2
. (24)

Lenders price the higher default probability induced by a higher LTV, higher LTI, or lower

income growth. Properties (20) and (21) describe what the credit surface looks like. The ratio(
θ
λ

)2 A
B
controls whether mortgage rates react more to changes in LTI or LTV. The ratio A

λ

controls whether rates react more to income growth or to LTI.

Property (22) shows how monetary policy affects the credit supply surface. It lowers lenders’

cost of funds, thus increasing their ability to break-even with lower mortgage rates while sup-

porting higher LTV, higher LTI, or lower income growth. In that regard, a loose monetary
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policy cushions decreases in income and house prices. Ehrmann and Ziegelmeyer (2014) provide

supporting evidence that the transmission of monetary policy to mortgage rates is especially

beneficial for high LTI households
(

∂2R
∂λ∂RD

> 0
)
.

Property (23) shows a similar result for high expected house price growth (B). The property
∂2R
∂B∂A

> 0 means high-income-growth households will enjoy larger interest rate reductions when

house prices are expected to grow. Intuitively, lenders are less willing to lower rates for low-

income-growth households even during expected house price booms, because these households

are inherently riskier. Also, ∂2R
∂B∂λ

< 0 has an interesting empirical implication, as it shows how,

keeping the LTV constant, households with high LTI ratios will benefit more from increases in

house prices. This is because those households have larger positions in real estate.

Property (24) shows that if the recovery rate is suffi ciently high, then a reduction in default

costs cushions low-income-growth borrowers. That is, for low default costs (high γ), the slope

of R with respect to A is less steep. Likewise, the slope of R with respect to λ or θ becomes

less steep with low default costs.

The next proposition characterizes the mortgage spread, defined as∆R(A, θ, λ) =R(A, θ, λ)−
RD.

Proposition 4 For a borrower of type A with LTV θ and LTI λ, the mortgage spread, ∆R(A, θ, λ) =

R(A, θ, λ)−RD is increasing in lenders’cost of funds. That is,

∂∆R

∂RD
> 0.

The reduction in default probability associated with a lower cost of funds
(
RD
)
is more

than one-to-one, and, as a result, loose monetary policy (RD falls) lowers mortgage spreads;

that is, ∆R falls.

3.3 Supply-Driven Extensive Margin of Credit

The credit ceiling allows us to define a lender-driven extensive margin of credit. That is,

we can define the minimum income growth that a borrower must have for lenders to issue her

a mortgage at a given LTI and LTV. We denote this borrower type as AL (λ, θ) . Any borrower

with income growth below this threshold cannot secure a mortgage with that LTI and LTV.

Using AL (λ, θ) to integrate over households’types gives the share of households who would be

rejected mortgage credit, which we denote as ΨL (λ, θ) .
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Definition 1 The borrower with the minimum income growth such that lenders would finance

her mortgage with a given LTI and LTV is

AL (λ, θ) = λ

[
RD

ε0γ
− 1

θ
B

]
. (25)

If A > AL (λ, θ), the household can obtain a mortgage from the lender, and otherwise she

cannot. Thus, for given LTV and LTI ratios, we can define the fraction of lender-rationed

households as

ΨL (λ, θ) =

∫ max{AL(λ,θ),A}

A

g (A) , (26)

with ∂ΨL(λ,θ)
∂B

< 0, ∂ΨL(λ,θ)
∂ε0

< 0, ∂ΨL(λ,θ)
∂θ

> 0, ∂ΨL(λ,θ)
∂RD

> 0, and ∂ΨL(λ,θ)
∂λ

> 0 if
[
RD

ε0γ
− 1

θ
B
]
> 0.

Moreover, ∂ΨL(λ,θ)
∂λ∂θ

> 0. The fraction
[
1−ΨL (λ, θ)

]
is the lender-driven extensive margin

of credit: that is, how many borrowers qualify for a mortgage with an LTV equal to θ and an
LTI of λ.

The condition
[
RD

ε0γ
− 1

θ
B
]
in (25) relates the difference between financing costs (RDθ) to

expected home price growth multiplied by the recovery rate (Bε0γ). If this difference is high,

then conditions are not good for lenders, and so rationing happens at a higher rate. The

opposite occurs if it is low.

The following effects lower AL (λ, θ), and thus induces lenders to extend credit to riskier

households: a reduction in RD, higher expected house price growth (B), or a better expected

business cycle (ε0). This result is supported by evidence from Jimenez et al. (2014) that

expansive monetary policy alters the risk composition of the supply of credit and, in particular,

banks’risk-taking. The lender’s cutoff AL does not depend on the current price p, but rather

on the expected price growth B. The idea is that lenders care about future prices of collateral,

which are better captured by B than p.

Changes in LTV have larger effects the larger the LTI
(
∂ΨL(λ,θ)
∂λ∂θ

> 0
)
. Regulations imposing

lower LTV ratios constrict credit per capita, but they also expand the range of individuals who

qualify for credit
(
∂ΨL(λ,θ)

∂θ
> 0
)
. That is, they constrict the intensive margin of credit, but

expand the extensive margin of credit.
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4 Credit Demand

Households of type A compare the utility from being a renter with the utility of homeown-

ership. If the utility of homeownership is larger, the household applies for a mortgage. The

next lemma characterizes the solution to the household’s problem.7

Lemma 1 Renter’s choices (I = 0) are

hr =
y

r
, (27)

W (A) = log
(y
r

)
+ βyε0A. (28)

Homeowner’s choices (I = 1) are

h(θ∗(A)) =
y

(1− θ∗(A))p
, (29)

m(θ∗(A)) =
θ∗(A)y

1− θ∗(A)
, (30)

U(A, θ∗(A)) = k log

(
y

p(1− θ∗(A))

)
+ yβε2

[
(B + [1− θ∗(A)]A)2

θ∗(A)[1− θ∗(A)]R(A, θ∗(A)))

]
, (31)

θ∗(A) = min
{
θ̂(A),Θ

}
, (32)

where θ̂(A) solves

k

1− θ̂(A)
=

yβε2(B + A[1− θ̂(A)])

θ̂(A)[1− θ̂(A)]R(A, θ̂(A))

[
2A+

(
∂R

∂θ
− [2θ̂(A)− 1]

)
(B + A[1− θ̂(A)])

θ̂(A)(1− θ̂(A))

]
. (33)

The difference between an owner’s (U) and renter’s utility (W ) for a household of type A is

z(A, θ∗) = U(A, θ∗)−W (A) = log

(
ryk−1

pk(1− θ∗)k

)
+ yβε0

[
ε(B + A[1− θ∗])2

2θ∗[1− θ∗]R − A
]
, (34)

where θ∗denotes θ∗(A), and R denotes R(A, θ∗). The household would prefer to own if z(A, θ∗) >

0.

Expression (33), which is the first order condition of U(A, θ) with respect to θ, characterizes

the household’s target LTV, θ̂(A). Households demand a higher LTV when house prices are

7Without loss of generality we assume that first-period income is suffi ciently low, and, in particular, y ≤ 1
βRD .

This condition rules out the case of renters saving in deposits, as we prove in the Appendix.
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expected to grow (high B), as this raises the upside of a real estate gamble. A lower home-

ownership premium (low k) lowers the LTV. If the slope of lenders’mortgage rate curve, as a

function of loan size, gets steeper, then households’target LTV is smaller. Proposition 5 will

derive these properties using the closed-form, equilibrium expression for θ̂(A).

Our approach in (32) to the borrower’s LTV choice is similar to Eaton and Gersovitz (1981).

Households internalize the credit surface R(·) and the regulatory cap Θ, but they do not in-

ternalize the lender’s credit ceiling. If households internalized this ceiling, then (32) becomes

min
{
θ̂(A),Θ, θ̄(A, λ)

}
. Thus, no mortgage application would be rejected because, by con-

struction, households would not apply for an LTV larger than what lenders would grant. Our

expression (32) allows for the existence of mortgage rejections and a lender-driven extensive

margin of credit.

Interestingly, reducing a binding down-payment constraint has the largest effects on home-

ownership demand from households with less current income. That is, ∂z(A,Θ)
∂y∂Θ

≤ 0.8 This is an

empirical fact documented by Landvoigt et al. (2015), and by Fuster and Zafar (2014).

4.1 The Borrower-Driven Extensive Margin of Credit

A credit demand, or borrower-driven, extensive margin of credit is defined because some

household prefer to rent than to apply for a mortgage. Formally, we define this extensive margin

in the following proposition.9

Definition 2 For a given θ∗ = min
{
θ̂,Θ

}
, where θ̂ is implicit in (33) and Θ is the regulatory

LTV cap, define AB (θ∗) such that

z(AB (θ∗) , θ∗) = 0. (35)

Then, if A > AB (θ∗), the household would like to own, and otherwise she rents. Therefore, we

can consider

ΨB (θ∗) =

∫ max{AB(θ∗),A}

A

g (A) dA, (36)

and define the borrower-driven extensive margin of credit as the share of households who
would choose to seek out a mortgage with an LTV of θ∗, that is,

[
1−ΨB (θ∗)

]
.

8The proof is with the proof of Lemma 1 and requires θ̂(A) ≤ 1, which is a condition guaranteed if expected
house price growth is below a certain threshold, B < RD

ε0γ
.

9We characterize this definition in the Appendix.
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If the LTV is too low from the household’s perspective, such as when LTV regulation is

tight, then households would prefer to rent than to pay a large down payment or seek out a

smaller, lower-quality house. In that case, raising the LTV increases the number of households

willing to be homeowners; that is, it increases the borrower-driven extensive margin of credit.

In addition, higher mortgage rates discourage households from homeownership, holding the

LTV constant.

5 Equilibrium in Mortgage Markets and Housing Tenure

Choice

5.1 Mortgage Markets

For exogenous rental rates (r), house prices (p) and lenders’cost of funds (RD), we define

an equilibrium in mortgage markets as a set of functions {R∗(A),m∗(A), θ∗(A)} characterized
in the next proposition.

Proposition 5 Each household solves her problem (3)− (10) such that she applies for a mort-

gage if A > AB (θ∗) . The lender’s zero-profit condition (15) holds for each mortgage applicant.

The share of mortgage applications rejected is

Γ =

∫ AL(θ∗)

AB(θ∗) g (A) dA

[1−ΨB (θ∗)]
, (37)

with

θ∗ = min
{
θ̂,Θ

}
, (38)

θ̂ = 1−
yβ
(
RD − ε0γB

)
k(2γ − 1)

, (39)

m∗ =
θ∗y

1− θ∗ , (40)

λ∗ =
m∗

y
. (41)
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The mortgage rate for financed households of type A is:

R∗(A) =


(2γ−1)(B+A(1−θ∗))2ε2

θ∗(ε0γ(B+A(1−θ∗))−RDθ∗) if max {ε, ε∗ (.)} = ε∗ (.)

RD if max {ε, ε∗ (.)} = ε

 . (42)

The target LTV θ̂ satisfies ∂θ̂
∂ε0

> 0, ∂θ̂
∂γ
> 0, ∂θ̂

∂RD
< 0, ∂θ̂

∂y
< 0, ∂θ̂

∂k
> 0 and ∂2θ̂

∂ε0∂γ
< 0.

Lastly, when θ̂ > Θ, the rejection rate Γ satisfies ∂Γ
∂Θ

> 0. It satisfies ∂Γ
∂RD

> 0 if and only if
g(AL)
g(AB)

> (1− Γ) γ
1−γ .

For households at their desired LTV
(
θ∗ = θ̂

)
, this LTV is procyclical

(
∂θ̂
∂ε0

> 0
)
since

households can sustain higher leverage when house prices and income are expected to grow.

Similarly, households with higher initial incomes are better-off with a lower LTV
(
∂θ̂
∂y
< 0
)
.

Higher default costs correspond to a lower LTV, since the costs of default are directly trans-

ferred to the household through the equilibrium interest rate
(
∂θ̂
∂γ
> 0
)
. Thus, reforms which

improve foreclosure processes should allow mortgage markets to sustain higher LTV ratios. The

procyclicality of the optimal LTV depends on the level of default costs
(

∂2θ̂
∂ε0∂γ

< 0
)
. That is,

if foreclosures impose significant costs on lenders, then, during a downward business cycle, the

LTV will fall more quickly than when the costs of default are lower.

On the other hand, if households are bound by the regulatory LTV cap (θ∗ = Θ), then

raising the LTV cap will increase the number of rejected mortgage applications
(
∂Γ
∂Θ

> 0
)
. This

happens because reducing a binding down payment threshold brings lower-quality borrowers

into the application pool (AB falls).

When a lender’s borrowing cost RD increases, it becomes more stringent and rejects g(AL)

more applicants; at the same time, households understand that this increase inRD will be passed

on to them in the form of a higher mortgage rate, which prompts g(AB) fewer households to

apply for a mortgage. Thus, if g(AL)
g(AB)

exceeds a threshold (1−Γ) γ
1−γ , then the mortgage rejection

rate increases
(
∂Γ
∂Θ

> 0
)
, and otherwise it will fall

(
∂Γ
∂Θ
≤ 0
)
.

The next proposition pins down the equilibrium thresholds for the lender and borrower-

driven extensive margins of credit as a function of the equilibrium LTV θ∗ characterized above.

Proposition 6 The thresholds for the lender and borrower-driven extensive margins of credit
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are

AB (θ∗) =
(1− θ∗)(2γ − 1) log

[
pk(1−θ∗)k
ryk−1

]
− yβ

[
ε0γB −RDθ∗

]
(1− θ∗)(1− γ)ε0yβ

, (43)

AL (θ∗) =
θ∗

(1− θ∗)

[
RD

ε0γ
− B

θ∗

]
. (44)

The extensive margin of credit is lender-driven (AB ≤ AL) if and only if

p

r
≤
[

µ1−k

(1− θ∗)k

]
exp

{
yβ
[
ε0γB −RDθ∗

]
γ(1− θ∗)

}
, (45)

where µ = p
y
represents the price-to-current-income ratio.

The inequality (45) characterizes when there is credit rationing, that is, when households

willing to buy are rejected credit. First, the price-to-rent ratio cannot be suffi ciently high

or potential homebuyers would not apply for credit and rent instead. Thus, for high price-

to-rent ratios the extensive margin is driven by borrowers, not by lenders. Second, lenders

ration credit more when house prices are expected to grow less, in bad business cycles, with

lower recovery rates, and with a higher cost of funds. However, the two extensive margins are

strongly connected. Households care about the same variables as lenders, since those variables

alter their mortgage rates. Lower B, ε0, and γ, and higher RD have a negative impact on

borrowers, and in such a way that makes the borrower-driven margin more likely to dominate.

To further explore this issue, using (43) and (44) , we can write one threshold as a function of

the other

AB =
2γ − 1

1− γ
1

yβε0
log
[p
r
µk−1(1− θ∗)k

]
+

γ

1− γAL. (46)

Then we can see that, as long as γ > 0.5, the derivative of AB with respect to B is always

greater, in absolute terms, than the derivative of AL with respect to B. This is because,
∂AB
∂B

= γ
(1−γ)

∂AL
∂B

< ∂AL
∂B

< 0. One implication of this relationship is that an increase in home

price growth can switch the dominant margin from borrower-driven to lender-driven, but the

converse is not possible. So, in periods of home price acceleration, it is increasingly likely that

credit supply is the driver of the rent-own decision.

5.2 Housing Tenure Choice

Now we introduce a housing tenure choice rule, which will be important for our analysis

of optimal LTV policy in Section 6. Suppose that a household decides to apply for a mortgage
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(A > AB(θ∗)). There are two cases: either (i) the household is granted a mortgage with

LTV θ∗ and becomes a homeowner (A > AL(θ∗)), or (ii) she is rejected by the lender (when

A ≤ AL(θ∗)), learns her credit ceiling θ̄(A), and re-solves her problem (3)− (10), replacing (9)

with her LTV ceiling θ̄(A).10 In the second case, the household will accept mortgage credit if

and only if borrowing at her credit ceiling is preferred to renting, that is, if A > AB(θ̄(A)).

Formally, the tenure choice rule can be defined as follows:

I =

{
1 if A > AR(Θ)

0 if A ≤ AR(Θ)

}
, (47)

where AR(Θ) is the rent threshold, defined by

AR(Θ) = AB

(
min

{
θ̂,Θ, θ̄(AR(Θ))

})
. (48)

Thus, the household’s tenure choice features a cutoff rule, where households with productivity

above the rent threshold AR(Θ) defined in (48) own, and the remaining households rent.

5.2.1 Price-to-Rent and Tenure Choice

Now we explore the role of the price-to-rent ratio in the choice of housing tenure. First,

we can re-arrange (43) to derive a user-cost formula akin to Poterba (1984):

log

(
r

p

)
= log(1− θ)− β

[
ε0y

ε(B + (1− θ)AB)2

2R(θ∗, AB)θ∗(1− θ∗) − ε0yAB
]
. (49)

We have focused on the case where the homeownership premium k is unity, and, for tractability,

shall do so for the rest of this section.11 Expression (49) says that the marginal homeowner,

AB, must be indifferent between buying a house and renting, which is the essence of the user

cost approach. In particular, note that, holding θ∗ and R(·) fixed in (49), the rent-price ratio
is decreasing in B. That is, the expected capital gain from house price growth reduces the user

cost of housing, and thus pushes down the rental rate.

Following the previous result, let us suppose that the rent-price ratio is a decreasing function

of expected house price growth. That is, r
p

= r
p
(B), with

∂( rp)
∂B

< 0. This leads to the following

proposition.

10We can express the lender’s LTV ceiling as a function of only the borrower’s type because, as shown in
(40) , the household’s LTI is a one-to-one mapping with the LTV.
11Our results are qualitatively unchanged if k 6= 1, but the exposition is clearer when k = 1. Also, for ease of

notation, we have simply written AB(θ∗) as AB .
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Proposition 7 The mortgage application threshold AB(θ∗) satisfies ∂AB
∂B

< 0 if and only if∣∣∣∣∣∣
∂
(
r
p

)
∂B

∣∣∣∣∣∣ < γ

1− θ∗
yβε0

2γ − 1

r

p
. (50)

In words, the condition (50) says that an increase in expected house price growth will lead to

an increase in mortgage applications only when the rent-price ratio does not react too steeply

to these expectations. Otherwise, the cost of homeownership today
(
p
r

)
outweighs both the

gains from more favorable credit conditions (lower R) and capital appreciation (higher B).

6 Optimal LTV Policy

LTV caps are among the most popular policies to regulate mortgage markets.12 A major

motivation for these caps are the negative externalities from larger default rates associated with

high LTV loans. For example, these externalities are pecuniary externalities or lost government

revenue from loan guarantees or bank bailouts. Neither households nor lenders internalize these

default externalities, and thus there is a role for government regulation.

In the model analyzed so far, the market allocation is socially optimal. In this section we

introduce default externalities to analyze optimal LTV policy. We denote by Λ the reduced-form

social cost per default. We will show that the optimal LTV policy reflects a tradeoff between

the benefits from reducing default and the gains from expanded access to homeownership.

First, we define ρ(A, θ) as the probability that homeowner A receiving an LTV of θ will

default. We can express this probability as

ρ(A, θ) =

∫ max{ε,ε∗(A)}

ε

dF (ε) = 1− 1

(2γ − 1)2

[
2γ − RDθ

ε(B + A(1− θ))

]2

. (51)

The default probability is increasing in θ, as a higher LTV makes default more likely, since

borrowers are more exposed to harmful aggregate shocks. That is,

∂ρ

∂θ
=

2

(2γ − 1)2

[
2γ − RDθ

ε(B + A(1− θ))

] [
RD(B + A)

ε(B + A(1− θ))2

]
> 0, (52)

12According to Claessens et al. (2014) at least 24 countries have LTV regulations. For example, Hong Kong
has a maximum LTV ratio of 70% or 60%, depending on the value of the property, but mortgage loans with an
LTV of up to 90% are available for homebuyers who meet certain eligibility criteria. Malaysia and Korea have a
70% maximum. In the U.S., GSE conforming mortgages and Qualified Mortgage loans are allowed LTV ratios
of 80%, and FHA loans can go up to 96.5%.
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provided θ < θ̄(A).13

The policymaker internalizes default externalities and can choose to impose an LTV cap,

Θ. The policymaker follows a utilitarian criteria and maximizes the sum of household utilities,

ū(Θ), net of default cost and subject to the lenders’zero profit condition:

V (Θ) = ū(Θ)− Λ

∫ ∞
max{A,AR(Θ)}

ρ
(
A,min

{
θ̂,Θ, θ̄(A)

})
g (A) , (53)

with

ū(Θ) =

∫ max{A,AR(Θ)}

A

W (A)g (A) +

∫ ∞
max{A,AR(Θ)}

U
(
A,min

{
θ̂,Θ, θ̄(A)

})
g (A) .

The policymaker takes into account that some households will be renters and others will be

owners according to the housing tenure rule (47). The lenders’expected profits equation drops

from (53) since it is zero. However, it will affect the optimal LTV through determining mortgage

rates for homebuyers and through mortgage rejections, both of which are reflected in U(·). The
following proposition characterizes the optimal cap.14

Proposition 8 The optimal LTV cap Θ∗ maximizes V and satisfies

0 =

∫ ∞
AR

∂U

∂Θ
g (A)− Λ

(
−ρ
(
AR,min

{
θ̂,Θ∗, θ̄(AR)

})
)
∂AR
∂Θ

g(AR) +

∫ ∞
AR

∂ρ

∂Θ
g (A)

)
. (54)

In particular, the LTV cap satisfies ∂Θ∗

∂Λ
< 0. Additionally, ∂Θ∗

∂k
> 0 when some households are

credit constrained (Θ∗ > θ̄(AR)).

The optimal LTV, as described by (54), reflects a tradeoff between default externalities and

allowing households access to homeownership. On the one side, when the costs of default are

large, the LTV cap should be smaller to reduce default rates. That is, ∂Θ∗

∂Λ
< 0. However,

lowering the LTV cap reduces household utility by making it diffi cult for households to access

homeownership, which delivers more utility per unit of housing services than renting, as cap-

tured by k. That is, ∂U
∂Θ
≥ 0 and ∂AR

∂Θ
≤ 0, which reflects how households are more likely to

prefer owning to renting when they have access to high LTV mortgages. When the benefits

from being a homeowner increase (larger k), optimal policy recommends higher LTV caps to

facilitate households’access to homeownership, so that ∂Θ∗

∂k
> 0.15

13If instead θ = θ̄(A), then, from Section 3, 2γε(B +A(1− θ)) = RDθ, and so ∂ρ
∂θ = 0. Even so, ∂ρ∂θ is weakly

increasing in θ.
14We focus on the more interesting case A ≤ AR(Θ) where not all households are homeowners.
15When Θ∗ ≤ θ̄(AR), it is possible that with a higher k the optimal LTV cap should be lower. This is because
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Figure 2 displays graphically the tradeoffbetween credit risk and home affordability. It plots

the homeownership rate and the default probability (for a household with 5% income growth)

as a function of the LTV cap. A higher LTV cap increases default probability, but also allows

households access to homeownership.

These remarks suggest that the optimal LTV cap has procyclical elements in the following

sense. During expansions, price-to-rent ratios typically grow, and so households can purchase

less housing per unit of leverage. Yet, the existence of a homeownership premium means that it

is socially optimal to accommodate the rising affordability barrier with higher leverage ratios.

Of course, with greater leverage, the expected external cost of default also grows, and so the

choice of a cap reflects a balance between the cost of default and the cost of unaffordability, as

captured by the first-order-condition in (54). Moreover, we can also infer from (54) that the

optimal LTV cap will depend on lenders’cost of funds
(
RD
)
and loan recovery rate (γ) through

the rent-own cutoff (AR) and through household decision-making
(
∂U
∂Θ

)
, which highlights a link

between monetary policy and financial regulation.

Before concluding, it is worth discussing that LTV regulation impact the intensive and

extensive margins of credit in different fashions. For example, if a binding LTV cap is increased,

households will take advantage of the additional leverage to either purchase larger, higher-

quality houses (the intensive margin), or to switch their housing tenure and become homeowners

(the extensive margin). However, the extensive margin effect will be muted when the lenders’

extensive margin is dominant (AR = AB(θ̄(AR))), since the regulatory LTV cap does not enter

into the lender’s expected profits. In other words, the credit supply surface does not change

with the regulatory cap Θ.

7 Non-Recourse Mortgages

To this point, we have focused on recourse mortgages. Now we analyze non-recourse

mortgages; that is, in the case of default, the lender only has recourse to the borrower’s house,

hp′. We summarize the main new results in the following proposition.

Proposition 9 A household with a non-recourse mortgage will default whenever the value of

her house is lower than the mortgage balance to repay, that is, hp′ ≤ Rm. Lenders will reject

higher k induces lower-quality borrowers to become homeowners and thus raises default. It may then be needed
to lower the optimal LTV cap to discourage these lower-quality households from taking out a mortgage. Thus,
when Θ∗ ≤ θ̄(AR), the sign of ∂2V

∂Θ∂k would, in general, depend on parameter values. However, when some
households are credit constrained

(
Θ∗ > θ̄(AR)

)
then we can be sure the LTV cap is increasing in k as some of

the riskier households would not qualify even if the cap increases.
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applications with an LTV greater than

θ̄ =
ε0γB

RD
, (55)

and charge the same mortgage rate to all financed households with an LTV of θ,

R∗ =


(2γ−1)B2ε2

θ(ε0γB−RDθ) if max {ε, ε∗ (.)} = ε∗ (.)

RD if max {ε, ε∗ (.)} = ε

 . (56)

At a given LTV, θ, the non-recourse mortgage rate is higher than the recourse mortgage rate

for every A. Additionally, at a given θ, the default probability of any household A is greater

under a non-recourse mortgage than under a recourse mortgage.

Lastly, if k ≥ 1, so that households place a utility premium on owner-occupied shelter,

then there exists an initial income threshold yR such that households will own if y > yR, and

otherwise they will rent. The threshold yR solves z∗(yR) = 0, where z∗ is the difference between
equilibrium utility of owners and renters.

Proposition 9 shows that both lenders and borrowers behave differently with non-recourse

mortgages than with recourse mortgages. Since a borrower’s type A neither reduces default

probability nor affects the value of assets recovered in the event of default, this variable plays

no role from a lender’s perspective. Thus, neither mortgage rates nor credit ceilings depend

on a household’s income.16 In non-recourse jurisdictions, variables such as the FICO score

should not have as significant an impact on access to credit or mortgage costs. In this light,

non-recourse mortgages dampen credit market heterogeneity among financed households; it is

as if, from the lenders’perspective, all households were of type A = 0.

With non-recourse mortgages, borrowers act differently in several dimensions. First, be-

cause lenders have no recourse to a household’s deposits, borrowers with suffi cient first-period

resources will find it optimal to invest in deposits as a way to hedge house price risk.17 In

particular, a homeowner’s second-period consumption now becomes

c′ = max {0, hp′ −mR (m)}+ y′ +RDd. (57)

16This result would change with reputational costs from default (e.g exclusion from all credit markets) since
the value of future access to credit, and hence the default decision, depends on a household’s income.
17To show this result we depart from Section 4 and relax the assumption that y ≤ 1

βRD .
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Second, because lenders ignore expected income growth (A) when lending, non-recourse

mortgages favor households with a high initial income (y) but low expected income growth

(A) over those with low initial income but high expected income growth (probably young

households). This last group suffers the most in terms of downpayments, credit limits and

mortgage rates. Many of these high expected income households may decide to rent. Thus,

non-recourse mortgages may generate larger inequality in access to credit.

Third, with non-recourse mortgages, a household will default whenever the value of her

house is lower than the mortgage balance to repay. Ceteris paribus, this leads households to

default more often with non-recourse mortgages. Ghent and Kudlyak (2011) provides empirical

evidence of this result.

Lastly, absent some form of punishment for default, non-recourse loans are, from the house-

hold’s perspective, basically a convex gamble on house prices where the maximum loss is the

downpayment. If prices increase quickly enough
(
p′ > Rm

h

)
households repay and enjoy the

capital gains. If prices fall too much, households default, and the lender absorbs the loss except

for the downpayment. Thus, non-recourse mortgages encourage demand for higher LTV ratios.

8 Conclusions

In this paper, we analyzed a model with heterogeneous agents, default and closed form

solutions. We studied the main drivers of credit demand and supply, highlighting new inter-

esting empirical predictions. Then, we used the model to analyze optimal LTV policy. The

macroprudential literature has focused on the importance of regulation as a means to internalize

the costs from higher default associated with high LTV. Our results show that it is important

not to neglect the beneficial role of mortgage debt as a gateway to homeownership. Optimal

policy is therefore a tradeoff between the two objectives. Exploring these insights in general

equilibrium is a topic we leave for future research.
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Appendix I. Parametrization

We divide the parameters into two groups. The first group of parameters are decided

exogenously directly from the data. The second group of parameters are chosen for the model

to match some empirical targets. Income growth follows a Pareto distribution with cumulative

distribution G(A) = 1−
(
A
A

)α
. Table 1 summarizes the parameters used in the figures.

A. Exogenously selected parameters. Lenders’cost of funds is assumed 1%
(
RD = 1.01

)
;

the LTV in steady state is θ = 0.8; the curvature in the Pareto distribution for income growth

is set to the value estimated by Clementi and Gallegati (2005) for the U.S. between 1980 and

2001 (α = 1.1) .

B. Endogenously selected parameters: The remaining parameters are selected for the model

to match the following targets that are consistent with U.S. averages from 1991 to 2013 obtained

from FRED.

1) Homeownership ratio, defined as 1−G(A∗), equal to 65%.

2) Loan default rate of 4%. The default rate in the model is

∫ max{A∗,A,Ã}
max{A∗,A} dG(A)∫∞

max{A∗,A} dG(A)
,

with Ã being the income growth threshold for default when aggregate shocks are at their mean,

that is, ε∗
(
Ã
)

= ε0.

3) An average mortgage rate of 6%. The average mortgage rate is∫ ∞
max{A∗,A}

R∗(A)dG(A|A > max {A∗, A}),

where G(A|A > max {A∗, A}) is the conditional density of a borrower receiving credit.

4) An average charge-off rate of 0.5%. Charge-offs are the value of loans, net of recoveries,

considered as a loss for the bank. The model equivalent is

∫ max{max{A∗,A,Ã}}

max{A∗,A}

R∗ (A)m− γ[hp′(ε0) + y′ (A, ε0)]

R∗ (A)m
dG(A|A > max {A∗, A}).

5) House price growth is on average 2%
(
E[p′(ε)]

p
= 1.02

)
.
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Appendix II: Proofs

Proof of Proposition 1

We use the result (which we prove with Lemma 1) that as long as there is a positive

probability of a borrower’s default (that is, ε∗ (A,R,m, h) > ε), mortgage rates are higher than

deposit rates, (that is, R(A, θ, λ) > RD for any A, θ and λ), and in that case households who

borrow to buy a house do not save in deposits (that is, m > 0⇒ d = 0).

For the case ε∗ (A,R,m, h) > ε, since the aggregate shock follows a Pareto-2 distribution,

we can write the lender’s expected profits as

E[Π(m,R)] = 2ε2γ

∫ ε∗

ε

[phB + yA]

ε2
dε+ 2ε2Rm

∫ ∞
ε∗

dε

ε3
−RDm

= 2γ(phB + yA)ε− ε2(phB + yA)2

Rm
(2γ − 1)−RDm.

Imposing the zero-expected-profit condition, ε0 ≡ 2ε and rearranging terms, we obtain

R =
(2γ − 1)(phB + yA)2ε2

m(ε0γ(phB + yA)−RDm)
, (.58)

or, using the definition of LTV (θ = m
ph
), and LTI (λ = m

y
).

R(A, θ, λ) =
(2γ − 1)(λB + θA)2ε2

λθ (ε0γ(λB + θA)−RDλθ)
if max {ε, ε∗ (.)} = ε∗ (.) .

If ε∗ (A,R,m, h) ≤ ε there is no risk of borrower’s default and R = RD.

Using (.58) , γ > 1
2
, and since mortgage rates cannot be negative, then m ∈ (0, ε0γ(phB+yA)

RD
).

Therefore, we define the credit ceiling for borrower A as

m̄(h,A) =
ε0γ(phB + yA)

RD
. (.59)

The result for θ̄(A, λ) follows from rearranging terms in the expression for the credit ceiling

(.59) , and using the definitions of LTV and LTI. That is,

m̄

ph
=
ε0γ(λB + m̄

ph
A)

λRD
⇐⇒ θ̄(A, λ) =

ε0γλB

λRD − ε0γA
.
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We can write expected revenue as

Ω(h,m,R,A) = ε0γ(phB + yA)− ε2(phB + yA)2

Rm
(2γ − 1),

and given γ > 1
2
, we obtain

∂Ω

∂R
=
ε2(phB + yA)2

mR2
(2γ − 1) > 0,

∂2Ω

∂R2
= (−2)

ε2(phB + yA)2

mR3
(2γ − 1) < 0,

and, moreover,

lim
R→∞

Ω = ε0γ(phB + yA) > 0.

Hence, Ω (.) is increasing and concave in R on R+. Moreover, since Ω is increasing and has a

finite limit as R→∞, then it is bounded above in R.

Lastly, as to why γ ≤ 1
2
relates to a situation of no-default, we shall see in Lemma (1) that

the default threshold for a mortgage applicant of type A requesting an LTV of θ can be written

as

ε∗(A) =
Rθ

B + A(1− θ) = (2γ − 1)
(B + A(1− θ))ε2

ε0γ(B + A(1− θ))−RDθ
,

which is non-positive when γ ≤ 1
2
and m < m̄(A). Thus, max{ε∗(·), ε} = ε and default

probability is zero. Intuitively, the costs of default are so great that, if the lender is to offer a

loan, it will be at such a low interest rate as to eliminate the possibility of default.

Proof of Proposition 2

We obtain ∂θ̄
∂A

= (ε0γ)2λB
(λRD−ε0γA)2

> 0, ∂θ̄
∂B

= ε0γλ
λRD−ε0γA > 0, ∂θ̄

∂RD
= − λ2ε0γB

(λRD−ε0γA)2
< 0, ∂θ̄

∂λ
=

−(ε0γ)2AB
(λRD−ε0γA)2

< 0, and ∂θ̄
∂γ

= ε0λ2BRD

(λRD−ε0γA)2
> 0. Moreover, the interaction of the properties are

∂2θ̄
∂B∂A

= (ε0γ)2λ
(λRD−ε0γA)2

> 0, and ∂2θ̄
∂γ∂RD

=
−ε20λ2γAB−ε0λ3BRD

(λRD−ε0γA)3
< 0.

Proof of Proposition 3

First, the derivative of R over A is:

∂R

∂A
=

1

λ

(2γ − 1)ε2(λB + θA)
[
ε0γ(λB + θA)− 2RDλθ

]
[ε0γ(λB + θA)−RDλθ]2

.
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Given γ > 1
2
then ∂R

∂A
< 0 ⇐⇒ ε0γ(λB + θA) − 2RDλθ < 0 ⇐⇒ m > m̄(A)

2
, where m̄(A) is

defined in (.59) . However, m̄(A)
2

= γm̃, where

m̃ =
ε0 (phB + yA)

2R
(.60)

is the mortgage size at which there is no risk of borrower’s default, that is ε∗ (A,R, m̃, h) = ε.

Since ε∗ (A,R,m, h) is increasing in m, then ε∗ (A,R,m, h) > ε ⇐⇒ m > m̃. Thus, γ < 1

guarantees that m̃ > γm̃, and we can conclude that ∂R
∂A

< 0 as long as m > m̃, that is, as long

as there is some probability of borrower’s default.

The derivative of R over λ is ∂R
∂λ

= − A
λ2

(2γ−1)ε2(λB+θA)[ε0γ(λB+θA)−2RDλθ]
[ε0γ(λB+θA)−RDλθ]2 . Its sign depends on[

ε0γ(λB + θA)− 2RDλθ
]
. Thus,

ε0γ(λB + θA)− 2RDλθ < 0⇐⇒ m > m̃⇐⇒ ∂R

∂λ
> 0.

Similarly, we can show that ∂R
∂θ

= − B
θ2

(2γ−1)ε2(λB+θA)[ε0γ(λB+θA)−2RDλθ]
[ε0γ(λB+θA)−RDλθ]2 , and therefore ∂R

∂θ
> 0 if

m > m̃.

∂R
∂λ
and ∂R

∂θ
are linked to ∂R

∂A
as :

∂R

∂λ
= −A

λ

∂R

∂A
, (.61)

∂R

∂θ
= −λB

θ2

∂R

∂A
. (.62)

Using (.61) and (.62) , we can compute the cross derivatives with respect to RD. That is,
∂2R

∂A∂RD
= −2RDθ2λε2(2γ−1)(λB+θA)

[ε0γ(λB+θA)−RDθλ]3
< 0, ∂2R

∂λ∂RD
= −A

λ
∂2R

∂A∂RD
> 0, and ∂2R

∂θ∂RD
= −λB

θ2
∂2R

∂A∂RD
>

0. Then we can show the cross derivatives with respect to B. That is, ∂2R
∂A∂B

= ε2(2γ −

1)
2(RDλθ)

2

[ε0γ(λB+θA)−RDλθ]3 > 0, ∂2R
∂λ∂B

= −A
λ

∂2R
∂A∂B

< 0, and ∂2R
∂θ∂B

= − λ
θ2
∂R
∂A
− λB

θ2
∂2R
∂A∂B

< 0.

Finally, we can compute the cross derivatives with respect to γ. That is,

∂2R
∂A∂γ

= ε2(λB+θA)
λ

{[
ε20γ(λB+θA)2−3RDλθε0(λB+θA)+4(RDλθ)

2
]

[ε0γ(λB+θA)−RDλθ]3

}
, ∂2R
∂λ∂γ

= −A
λ
∂2R
∂A∂γ

, and ∂2R
∂θ∂γ

=

−λB
θ2

∂2R
∂A∂γ

. The sign depends on the value of γ, with γ >
3RDλθε0(λB+θA)−4(RDλθ)

2

ε20(λB+θA)2
⇐⇒ ∂2R

∂A∂γ
>

0, ∂
2R

∂λ∂γ
< 0, ∂

2R
∂θ∂γ

< 0.
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Proof of Proposition 4

The mortgage spread is ∆R(A, θ, λ) = R(A, θ, λ)−RD = (2γ−1)(λB+θA)2ε2

λθ(ε0γ(λB+θA)−RDλθ) −R
D.We can

show that m > m̃, with m̃ defined in (.60) , implies that ∆R is increasing in RD. To show this,

first consider the percentage mark-up of the mortgage rate over the risk free rate: ∆R

RD
. On the

one hand,

∂
[

∆R

RD

]
∂RD

=
∂

∂RD

[
(2γ − 1)(λB + θA)2ε2

λθ (ε0γ(λB + θA)RD − (RD)2λθ)
− 1

]
= − (2γ − 1)(λB + θA)2ε2

λθ (ε0γ(λB + θA)RD − (RD)2λθ)2 [ε0γ(λB + θA)− 2(RD)λθ] > 0,

because ε0γ(λB + θA) − 2(RD)λθ < 0 ⇐⇒ m > m̃. However, on the other hand, we can

equivalently write
∂
[

∆R

RD

]
∂RD

=
∂∆R/∂RD

RD
− ∆R

(RD)2
,

which, from above, must be positive, and thus we infer ∂∆R

∂RD
> 0. So the credit spread ∆R is

increasing in RD if m > m̃.

Characterizing Definition 1

Fixing a mortgage size m in (16) we obtain m̄ (AL (λ, θ)) = m, and from there it follows

AL (λ, θ) = λ
[
RD

ε0γ
− 1

θ
B
]
. Since the credit ceiling m̄ is strictly increasing in A, if A < AL,

then m̄(A) < m̄(AL) = m. This implies that for A ≤ AL, the borrower’s application for

mortgage m is rejected. Taking derivatives we obtain ∂AL(λ,θ)
∂B

= −λ
θ
< 0, ∂AL(λ,θ)

∂ε0
= − λRD

(ε0)2γ
< 0,

∂AL(λ,θ)
∂θ

= λB
θ2
> 0, ∂AL(λ,θ)

∂RD
= λ

ε0γ
> 0, and ∂AL(λ,θ)

∂λ
= RD

ε0γ
− 1

θ
B > 0 if

(
RD

ε0γ
− 1

θ
B
)
> 0.

Using Leibniz rule, we can show ∂ΨL(λ,θ)
∂B

= −g(AL (λ, θ))λ
θ
< 0, ∂ΨL(λ,θ)

∂ε0
= −g(AL (λ, θ)) λRD

(ε0)2γ
<

0, ∂ΨL(λ,θ)
∂θ

= g(AL (λ, θ))λB
θ2

> 0, ∂ΨL(λ,θ)
∂RD

= g(AL (λ, θ)) λ
ε0γ

> 0, ∂ΨL(λ,θ)
∂λ∂θ

= g(AL(λ,θ))B
θ2

> 0 and
∂2ΨL(λ,θ)

∂λ
= g(AL (λ, θ))

(
RD

ε0γ
− 1

θ
B
)
> 0⇐⇒

(
RD

ε0γ
− 1

θ
B
)
> 0.
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Proof of Lemma 1

Derivation of Renter’s Solution

The problem’s setup is detailed in (4)-(6). First, we substitute (6) into (4) so the renter’s

problem is a two-variable optimization in hr and dr. The Karush-Kuhn-Tucker conditions for

these two variables are, respectively

λr =
1

hr
,

λ = βRD + µd.

The multiplier λ corresponds to the constraint (5), and µd corresponds to dr ≥ 0. Because

of log utility in housing services we know hr > 0 and we can omit the associated multiplier

for hr. If dr > 0, we obtain hr = 1
rβRD

, dr = y − rhr. However, this requires y > 1
βRD

, for

otherwise we have dr ≤ 0. If y is less than this threshold, the solution is hr = y
r
. In this case,

substituting hr into (4) and using the fact that E[y′] = yAε0, we obtain the value function

W (A) = log
(
y
r

)
+ βyAε0.

Derivation of Owner’s Solution

The problem’s setup is detailed in (7)-(10). Using the Principle of Optimality, we begin by

optimizing over all decisions for a given θ, and then optimize over θ. Also, until the last step

when we optimize over θ, we shall simply write R(A,m) as R. The household internalizes the

credit supply surface R(A,m) in its choice of LTV.

First, we show that if there is a positive probability of borrower’s default, that is, if ε∗(A) > ε,

then R > RD. This result gives that households with mortgage debt do not hold deposits. We

prove the result by contradiction. We write lender’s expected profits as

E[Π (A)] =

∫ ε∗(A)

ε

γX(ε)dF (ε) +

∫ ∞
ε∗(A)

RmdF (ε)−RDm,

where X(ε) represents household’s period-two resources: X(ε) = hp′(ε) + y′(A, ε). The default-

inducing shock threshold for borrower A, denoted ε∗(A), is defined as

Rm = X(ε∗(A)). (.63)
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If there is a positive probability of default, that is, if ε∗(A) > ε, and if R ≤ RD, then

E[Π (A)] =

∫ ε∗(A)

ε

γX(ε)dF (ε) +

∫ ∞
ε∗(A)

RmdF (ε)−RDm (.64)

≤ γ

∫ ε∗(A)

ε

RmdF (ε) +

∫ ∞
ε∗(A)

RmdF (ε)−RDm (.65)

< Rm−RDm (.66)

≤ 0,

where (.65) uses the fact that p′, y′ are increasing in ε, and ε∗ satisfies (.63). And γ < 1

guarantees (.66) . Hence the zero-profit condition cannot hold if R ≤ RD, and thus we conclude

R > RD if ε∗ (A) > ε.

To show that if m > 0, then d = 0, suppose there exists an allocation with m > 0, d > 0,

for a given h. Then, using the budget constraint d+ ph = m+ y, utility is given by

U1 = k log

(
m+ y − d

p

)
+ β

∫ ∞
ε∗

[RDd+ hp′(ε) + y′(ε)−Rm]dF (ε), (.67)

ε∗ =
Rm−RDd

phB + yA
, (.68)

where the expression for the default threshold ε∗ used the fact that p′(ε) = pBε, y′(ε) = yAε.

We have also used the fact that expected consumption can be written as

E [max {0, c′}] =

∫ ∞
max{ε,ε∗(.)}

[
RDd+ hp′ (ε) + y′ (ε)−Rm

]
dF (ε) . (.69)

Where ε is the worst possible case business cycle. Now, let us construct a new allocation with

d̂ = 0, m̂ = m − RD

R
d. We know from the lender’s problem that RD < R. We also know

that if y < ph, that is, if the household cannot purchase the house without a mortgage, then

m−d > 0. These two facts establish that m̂ is positive. By construction, ε∗m = ε∗m̂. That is, the

new allocation does not change the default threshold. Moreover, also by construction, c′m = c′m̂
for any p′, y′, h, so that the new allocation does not change second-period consumption when

the household does not default. Therefore, writing utility under the new allocation as

U2 = k log

(
m̂+ y

p

)
+ β

∫ ∞
ε∗

[hp′(ε) + y′(ε)−Rm̂]dF (ε),
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and taking the difference with utility under the original allocation, we obtain

U2 − U1 = k log

(
m̂+ y

m− y − d

)
= k log

(
m+ y − RD

R
d

m− y − d

)
> 0

since RD < R. Thus, utility was improved under the allocation with d̂ = 0 and m̂ > 0.

Therefore, we conclude that, if the optimal plan for the household is to have m > 0, then d = 0.

That is, borrowers do not also save in deposits.

Because R > RD implies d = 0, then from the first-period budget constraint

h =
y

p(1− θ) . (.70)

Substituting this h into to (12), and using m = θph, we obtain the default threshold

ε∗(A) =
Rm

phB + yA
=

Rθ

B + A(1− θ) .

We can obtain the value function for homeowners:

U(A) = k log(h)+β

∫ ∞
ε∗

[hp′(ε)+y′(ε)−Rm]dF (ε) = k log

(
y

p(1− θ)

)
+yβε2

[
(B + (1− θ)A)2

Rθ(1− θ)

]
.

In the general case, showing ∂2z
∂y∂θ

< 0 is quite diffi cult, although we can show this holds in

an equilibrium with θ̂ < 1. Specifically, differentiating (.74) :

∂z
∂y

=
k − 1

y
+

β

2γ − 1

[
−R

Dθ − ε0γB
1− θ + Aε0(1− γ)

]
,

∂2z
∂y∂θ

= − β

2γ − 1

[
RD − ε0γB

(1− θ)2

]
< 0.

since θ̂ < 1 implies RD > ε0γB.

Finally, we optimize over θ. In particular, as a function of θ, the household’s utility can be

expressed

U(A, θ) = k log

(
y

p(1− θ)

)
+ yβε2

[
(B + (1− θ)A)2

R(A, θ)θ(1− θ)

]
,

where we are writing R as R(A, θ) to acknowledge that the household internalizes the credit

supply surface in its choice of LTV. We assume that U(A, θ) is single-peaked in θ, which we shall

then verify in the proof of Proposition (5). It then follows that the unconstrained maximum of
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U with respect to θ can be uncovered via the first-order-condition of U with respect to θ,

0 =
k

1− θ −
yβε2(B + A(1− θ))

θ(1− θ)R

[
2A+

(
∂R

∂θ
− [2θ − 1]

)
(B + A(1− θ))

θ(1− θ)

]
.

Let θ̂ denote the unique solution to this expression. Strictly-speaking, there is nothing which

prevents θ̂ from being negative, in which case the household would like to short-sell. However,

we do not wish to consider such corner solutions here. Therefore, the only situation in which

the household’s LTV constraint binds is when θ̂ > Θ. In such a situation, the household will

choose Θ. Thus, the household’s solution features a cutoff rule: θ∗(A) = min{θ̂,Θ}.

Characterizing Definition 2

Note first that from (.74) we know that in equilibrium z is strictly increasing in A. Since
AB (R, θ) is defined such that z(AB (R, θ)) = 0, we infer that for A ≤ AB (R, θ) , z(A) ≤ 0,

and so the household rents. Moreover, we can express the fraction of borrowers who would

choose to rent rather than own as ΨB =
∫ AB
A

g(A)dA.

To show ∂AB(R,θ)
∂R

> 0, we use the Implicit Function Theorem:

∂AB (R, θ)

∂R
= −

∂z(AB(R,θ))
∂R

∂z(AB(R,θ))
∂AB(R,θ)

=

[
yβε0

ε(B+AB(1−θ))2
2R2θ(1−θ)

]
yβε0

[
ε(B+AB(1−θ))

Rθ
− 1
] > 0,

where we can show that the denominator is positive (weakly) by substitutingR by (42). Namely,

the bracketed term in the denominator becomes,

ε(B + A(1− θ))
Rθ

− 1 = ε(B + A(1− θ)) ε0γ(B + (1− θ)A)−RDθ

ε2(2γ − 1)(B + (1− θ)A)2
− 1,

=
ε(B + (1− θA))−RDθ

ε(2γ − 1)(A+ (1− θ)B)
,

which is non-negative if and only if

ε ≥ RDθ

B + (1− θ)A,

where the right-hand side corresponds to the value of ε∗ when the lender charges R = RD. But

35



the lender only charges such a rate if there is no risk of default, that is, if and only if

RDθ

B + (1− θ)A ≤ ε.

Continuing, for ∂AB(R,θ)
∂θ

we have

∂AB (R, θ)

∂θ
= −

∂z(AB(R,θ))
∂θ

∂z(AB(R,θ))
∂AB

= −

[
k

1−θ + yβε0ε
2R

[
(B+AB(1−θ))[(2θ−1)B+(θ−1)AB ]

[θ(1−θ)]2

]]
yβε0

[
ε(B+AB(1−θ))

Rθ
− 1
] .

Given a positive (weakly) denominator as before, k
1−θ > 0, yβε0ε

2R
> 0, and (B+AB(1−θ))

[θ(1−θ)]2 > 0, the

sign of ∂AB(R,θ)
∂θ

depends on the level of LTV; for example, if [(2θ − 1)B + (θ − 1)AB] > 0 then
∂AB(R,θ)

∂θ
< 0.

Proof of Proposition 5

Let us assume that A > AB (θ). Then we know that such a household will apply for a

mortgage. Specifically, by substituting (.70) into the relationshipm = θph we obtain borrower’s

requested loan amount, m, and then by substituting m into the bank’s zero-profit interest rate

curve, (.58). Specifically,

R(m,A) =
(2γ − 1)(phB + yA)2ε2

m(ε0γ(phB + yA)−RDm)
(.71)

=
(2γ − 1)(B + A(1− θ))2ε2

θ(ε0γ(B + A(1− θ))−RDθ)
. (.72)

If, on the other hand, A ≤ AB (θ), we have that the household does not apply for a loan. As a

result, the household is not a participant in the mortgage market, and instead rents a house.

As to the determination of θ∗, we can use the expression for R(·) in (.72) to write U in terms
of θ as

U(A) = k log

(
y

p(1− θ)

)
+ yβ

[
ε0γ(B + (1− θ)A)−RDθ

(2γ − 1)(1− θ)

]
, (.73)

and obtain a first-order-condition with respect to θ,

0 = k(1− θ) +
yβ

2γ − 1

[
ε0γB −RD

]
⇐⇒ θ = 1− yβR

D − ε0γB
k(2γ − 1)

= θ̂.

In particular, we have verified the hypothesis of Lemma (1) that U is single-peaked in θ.
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Therefore, using the result of Lemma (1), we conclude θ∗ = min{θ̂,Θ}.

As to characterizing θ̂, the derivatives are ∂θ̂
∂ε0

= yβγB
k(2γ−1)

> 0, ∂θ̂
∂RD

= − yβ
k(2γ−1)

< 0, ∂θ̂
∂y

=

−βRD−ε0γB
k(2γ−1)

< 0, ∂θ̂
∂k

= yβR
D−ε0γB
k2(2γ−1)

> 0, ∂2θ̂
∂ε0∂γ

= −yβB
k(2γ−1)2

< 0 and ∂θ̂
∂γ

= 2yβ
k

(
RD− 1

2
ε0B

(2γ−1)2

)
>

2yβ
k

(
RD−γε0B
(2γ−1)2

)
> 0 as γ > 1

2
.We have also assumed B < RD

ε0γ
, which means that the household’s

target LTV θ̂ is less than 1.

To characterize Γ when θ∗ = Θ, we can compute

∂Γ

∂Θ
=

1

1−ΨB(Θ)

(
∂AL(·,Θ)

∂Θ
g(AL)− [1− Γ]

∂AB(Θ)

∂Θ
g(AB)

)
,

where ∂AL(·,Θ)
∂Θ

> 0 from Section 3, and θ∗ = Θ < θ̂ implies ∂AB(Θ)
∂Θ

< 0. We can also compute

∂Γ

∂RD
=

Θ

ε0γ(1−Θ)[1−ΨB(Θ)]

(
g(AL)− [1− Γ]

γ

1− γ g(AB)

)
,

which is positive provided

Γ > 1− 1− γ
γ

g(AL)

g(AB)
.

Otherwise, it is negative. Note that γ > 1
2
and g(AL) < g(AB) (which is reasonable if G is

Pareto and AL > AB) imply that the right-hand side of the above inequality is between 0 and

1.

Proof of Proposition 6

Substituting (42) into (34) we obtain

z(A) = log

(
ryk−1

pk(1− θ∗)k

)
+ yβ

[
ε0γB −RDθ∗ + Aε0(1− γ)(1− θ∗)

(1− θ∗)(2γ − 1)

]
. (.74)

That is, z is a linear function of A. We find AB (R, θ) by setting z(A) = 0 and solving for A.

That is,

AB (θ∗) =
(1− θ∗)(2γ − 1) log

[
pk(1−θ∗)k
ryk−1

]
− yβ

[
ε0γB −RDθ∗

]
(1− θ∗)(1− γ)ε0yβ

. (.75)

Moreover, substituting (40) into (25) we can write the threshold for lender-driven credit

rationing as

AL (θ) =
θ∗

(1− θ∗)

[
RD

ε0γ
− 1

θ∗
B

]
. (.76)
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The condition AB ≤ AL is obtained from comparing (.75) and (.76)

θRD − ε0γB
ε0γ(1− θ∗) ≥

(1− θ∗)(2γ − 1) log
[
pk(1−θ∗)k
ryk−1

]
− yβ

[
ε0γB −RDθ∗

]
(1− θ∗)(1− γ)ε0yβ

⇐⇒
p

r
≤
[

yk−1

pk−1(1− θ∗)k

]
exp

{
yβ
ε0γB − θ∗RD

γ(1− θ∗)

}
.

Proof of Proposition 7

Consider the equilibrium mortgage application threshold AB as written in (46),18

AB =
2γ − 1

1− γ
1

yβε0
log
[p
r

(1− θ∗)
]

+
γ

1− γAL. (.77)

Then, differentiating (.77) with respect to expected house price growth B and using (44), we

obtain

∂AB(θ∗)

∂B
= −2γ − 1

1− γ
1

yβε0

p

r

∂ (r/p)

∂B
+

γ

1− γ
∂AL(θ∗)

∂B

= −2γ − 1

1− γ
1

yβε0

p

r

∂ (r/p)

∂B
− γ

1− γ
1

1− θ∗ ,

which is negative if and only if ∣∣∣∣∣∣
∂
(
r
p

)
∂B

∣∣∣∣∣∣ < γ

1− θ∗
yβε0

2γ − 1

r

p
.

Proof of Proposition 8

First, note that the planner’s function V (Θ) in (53) is concave in Θ, since aggregate

household utility ū(Θ) is concave in Θ, and default probability ρ is increasing in Θ when Θ

binds, using (52). Therefore, a solution to the first-order-condition of V with respect to Θ

18We continue to focus on the case where k = 1 because it leads to a cleaner exposition. It is straightforward
to show that the results are qualitatively the same when k 6= 1 and r is a decreasing function of B.
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corresponds to a local maximum. Differentiating V , we obtain

∂V

∂Θ
=
[
W (AR)− U

(
AR,min

{
θ̂,Θ, θ̄(AR)

})] ∂AR
∂Θ

g(AR) +

∫ ∞
AR

∂U

∂Θ
g (A) dA+

+ Λ

(
ρ
(
AR,min

{
θ̂,Θ, θ̄(AR)

}) ∂AR
∂Θ

g(AR)−
∫ ∞
AR

∂ρ

∂Θ
g (A) dA

)
, (.78)

where AR = AR(Θ) is the marginal homeowner indifferent between owning and renting. There-

fore, W (AR) = U(AR,min{θ̂,Θ, θ̄(AR)}) as in definition (48). The expression (.78) can then
be simplified to

∂V

∂Θ
=

∫ ∞
AR

∂U

∂Θ
g (A) dA− Λ

(
−ρ
(
AR,min

{
θ̂,Θ, θ̄(AR)

})
)
∂AR
∂Θ

g(AR) +

∫ ∞
AR

∂ρ

∂Θ
g (A) dA

)
.

(.79)

As to characterizing Θ∗, the Implicit Function Theorem implies that for any x such that
∂2V
∂Θ∂x

> 0, we have ∂Θ∗

∂x
> 0. Continuing,

∂2V

∂Θ∂Λ
= ρ

(
AR,min

{
θ̂,Θ, θ̄(AR)

}) ∂AR
∂Θ

g(AR)−
∫ ∞
AR

∂ρ

∂Θ
g (A) dA < 0,

using the fact that ∂AR
∂Θ
≤ 0, which means that households cannot be forced to borrow more

than they would like, and ∂ρ
∂Θ

> 0, which uses (52) and assumes that there exists a household

receiving an LTV of Θ∗.19

Lastly, suppose θ̄(AR) = min
{
θ̂,Θ∗, θ̄(AR)

}
, which means that some households are credit

constrained. Economically, this is not an unreasonable case to consider. It then follows that

AR is the solution to AR = AB
(
θ̄(AR)

)
which, notably, is independent of Θ∗, so that ∂AR

∂Θ
= 0

and thus

∂2V

∂Θ∂k
=

∫ ∞
AR

∂2U

∂Θ∂k
g (A) dA+

+

∂U
(
AR,min

{
θ̂,Θ, θ̄(AR)

})
∂Θ

− Λ
∂ρ
(
AR,min

{
θ̂,Θ, θ̄(AR)

})
∂Θ

 ∂AR
∂k

g(AR)

=

∫ ∞
AR

∂2U

∂Θ∂k
g (A) dA

=
1

1−Θ∗

∫ ∞
AR

1
{

Θ∗ = min θ̂,Θ∗, θ̄(AR)
}
g (A) dA > 0.

19Otherwise, the cap is not binding, and since no household receives an LTV of Θ∗, ∂ρ∂Θ = 0 for every A.
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In the second line, we used the fact that, because AR is independent of Θ∗, the marginal

household is not bound by the LTV cap, and so ∂U(·)
∂Θ

and ∂ρ(·)
∂Θ

both equal zero when evaluated

at A = AR. The indicator function 1
{

Θ∗ = min
{
θ̂,Θ∗, θ̄(AR)

}}
means that the LTV cap is

binding for household A, and we assume that this holds for a non-zero measure of households.

We conclude by remarking that, when we do not restrict ourselves to the case θ̄(AR) =

min
{
θ̂,Θ∗, θ̄(AR)

}
, it is possible that with a higher k, lower-quality borrowers are induced to

become homeowners. This puts downward pressure on the optimal LTV cap, to discourage

these lower-quality households from taking out a mortgage, as they have a greater default

probability. This is because k and θ are complements for the household. Thus, the sign of ∂2V
∂Θ∂k

would, in general, depend on parameter values.

Proof of Proposition 9

First, consider the lender’s decision. The lender’s zero-profit condition for a non-recourse loan

is

E[Π (h,m)] =

∫ max{ε,ε∗(.)}

ε

γhp′(ε)dF (ε) +

∫ ∞
max{ε,ε∗(.)}

RmdF (ε)−RDm. (.80)

Note that (.80) implies that the non-recourse zero-profit condition corresponds to the recourse

zero-profit condition for the case of a borrower with A = 0. Thus, the lender’s credit supply

surface is described by

R∗ =


(2γ−1)B2ε2

θ∗(ε0γB−RDθ∗) if max {ε, ε∗ (.)} = ε∗ (.)

RD if max {ε, ε∗ (.)} = ε

 . (.81)

The denominator of (.81) implies the following credit ceiling,

θ̄ =
ε0γB

RD
. (.82)

To show that default probability is greater under a non-recourse loan, note that the pro-

ductivity threshold for default for a given A and θ under a recourse loan is

ε∗(A, θ∗) =
R(A, θ)θ

B + A(1− θ) .

Since we saw in Proposition 2 that∂R
∂A

< 0, it is clear from above that ∂ε∗

∂A
< 0, holding θ fixed.

With a non-recourse loan, all households behave as type A = 0 in their propensity to default.
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Thus, ε∗ will be strictly greater for a non-recourse loan than for a recourse loan for any household

A at a given θ.20 Consequently, default probability, expressed as ρ(A, θ) =
∫ ε∗

max{ε∗,ε} dF (ε), will

be strictly higher for every household A in the non-recourse case. Likewise, ∂R
∂A

< 0 implies that

the mortgage rate for a non-recourse mortgage will be higher for every borrower A.21

As for households, because we have relaxed the assumption that y ≤ 1
βRD

, it is now possible

that renters will choose to hold deposits. Using (28), a renter’s utility can be written

W (A) = log

(
y − d
r

)
+ βRDd+ βε0yA,

so that solving the first-order condition with respect to d yields the renter’s choice of deposits,

dr = max

{
0, y − 1

βRD

}
.

For homeowners, we showed in Lemma 1 that it is not optimal for households to choose

deposits d > 0 when mortgages are recourse. Now, though, we can write the homeowner’s

utility, as a function of A and θ∗, as

U(A, θ∗) = k log

(
y − d

p(1− θ∗)

)
+ βRDd+ βε0yA+ β

∫ ∞
ε∗

[phBε−Rθ∗ph]dF (ε)

= k log

(
y − d

p(1− θ∗)

)
+ βRDd+ βε0yA+ βε2(y − d)

[
B2

Rθ∗(1− θ∗)

]
= k log

(
y − d

p(1− θ∗)

)
+ βRDd+ βε0yA+ β(y − d)

[
ε0γB −RDθ∗

(2γ − 1)(1− θ∗)

]
(.83)

Differentiating (.83) with respect to d and solving the first-order condition, we obtain

d∗ = max

{
0, y − k

[
βRD − β

(
ε0γB −RDθ∗

(2γ − 1)(1− θ∗)

)]−1
}
.

Using d∗, it is straightforward to solve the first-order condition of (.83) with respect to θ to

show that the target LTV is

θ̂ = 1−
β(y − d∗)

(
RD − ε0γB

)
k(2γ − 1)

,

20We are assuming A > 0, so that future labor income is always positive; a household does not enter the
second period with non-mortgage debt to pay off.
21We have assumed that there is positive probability of default, so that ε∗ > ε for both mortgage structures;

otherwise the probability of default equals zero in both cases.
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and thus the optimal LTV is

θ∗ = min
{
θ̂,Θ

}
.

Lastly, to show that households will own if y > yR and otherwise they will rent, it suffi ces to

show that ∂z∗
∂y
≥ 0, where z∗ = U∗ −W ∗ is the difference between owners’and renters’utility

in an equilibrium of mortgage markets and housing tenure choice. Conditional on showing
∂z∗
∂y
≥ 0, we can define yR such that z∗(yR) = 0.22 If z∗(y) < 0 for every y ∈ R+ then we shall

set yR =∞, and likewise if z∗(y) > 0 for every y ∈ R+, then we shall set yR = 0.

Continuing, from (.83), (28) and the expression for dr, we can express z∗ as a function of
first-period income y,

z∗(y) = log

(
r

y − dr

[
y − d∗

p(1− θR)

]k)
+ βRD (d∗ − dr) + β(y − d∗)

[
ε0γB −RDθR

(2γ − 1)(1− θR)

]
, (.84)

where θR = min
{
θ̄,Θ, θ̂

}
, representing the LTV a homeowner would receive in an equilibrium

of housing tenure choice. Note that, using an envelope theorem, ∂z
∗

∂d∗ = ∂z∗
∂dr

= 0 and likewise
∂z∗
θR

= 0 when θR = θ̂. If θR 6= θ̂, then θR is independent of y, as it either equals the lender’s

ceiling in (.82) or Θ. Therefore, differentiating (.84) with respect to y gives

∂z∗

∂y
=

k

y − d∗ −
1

y − dr
+ β

ε0γB −RDθR
(2γ − 1)(1− θR)

. (.85)

Note that, from the derivation of (.83), the third term in (.85) equals

β
E [max {0, hp′ −mR(m)}]

y − d∗ > 0.

Proceeding, and denoting proportionality as ∝, we can re-write (.85) as

∂z∗

∂y
∝ k − y − d∗

y − dr
+ (y − d∗) β ε0γB −RDθR

(2γ − 1)(1− θR)
,

= k − y − d∗
y − dr

+ (y − d∗) βΦ, (.86)

where

Φ =
ε0γB −RDθR

(2γ − 1)(1− θR)
.

22If there exists a non-degenerate interval Y ⊆ R+ such that ∂z∗

∂y = 0 for all y ∈ Y and z∗(y) = 0 for all
y ∈ Y , then yR is not unique, and it suffi ces to set yR = supY .
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Using the expressions for dr and d∗ above, we can write

y − dr = min

{
y,

1

βRD

}
,

y − d∗ = min
{
y, k

[
βRD − βΦ

]−1
}
.

Since k ≥ 1 and Φ > 0, there are three cases. In Case 1, y− dr = y = y− d∗. In this case, (.86)
implies

∂z∗

∂y
∝ k − 1 + yβΦ > 0.

In Case 2, y − dr = 1
βRD

and y − d∗ = k
[
βRD − βΦ

]−1
. In this case, (.86) becomes

∂z∗

∂y
∝ k − k RD

RD − Φ
+ k

Φ

RD − Φ

= 0.

In Case 3, y − dr = 1
βRD

and y − d∗ = y. In this case, (.86) becomes

∂z∗

∂y
∝ k − y

(
βRD + βΦ

)
,

≥ k − k = 0.

The last line used the fact that y − d∗ = y implies y ≤ k
[
βRD − βΦ

]−1
. This establishes that

∂z∗
∂y
≥ 0, which is what needed to be shown.

43



Tables and figures

Table 1: Parameters

RD = 1.01 B = 1.16 β = 0.99

k = 1.04 γ = 0.9 θ = 0.8

p = 1.46 y = 0.91 r = p
10.5

ε = 0.44 α = 1.1 A = 0.49
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Figure 1: Comparative statics on the loan-to-value ceiling. This figure plots the

loan-to-value ceiling θ̄(A, λ) characterized in Proposition 1 as a function of borrower’s income growth,

house price growth, lender’s cost of funds and recovery rates.
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Figure 2: Default risk versus home affordability. This figure plots borrower’s default
risk (for a household with 5% income growth) and the homeownership ratio for different values of the

binding LTV cap.
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