Dyballa, Luciano, et al. “Encoding manifolds constructed from grating responses organize responses to natural scenes in cortical visual areas.” bioRxiv (2024): 2024-10. Read More »
Jack S Carter, Manuele Leonelli, Eva Riccomagno and Gherardo Varando (2024). Learning staged trees from incomplete data. In Proceedings of the 12th International Conference on Probabilistic Graphical Models (PGM), pp. 231-252. PMLR. 11-13 September 2024, De Lindenberg, Nijmegen, the Netherlands. Read More »
Manuele Leonelli and Gherardo Varando (2024). Context-specific refinements of Bayesian network classifiers. In Proceedings of the 12th International Conference on Probabilistic Graphical Models (PGM), pp. 182-198. PMLR. 11-13 September 2024, De Lindenberg, Nijmegen, the Netherlands. Read More »
Sanchez-Garcia, Ruben, et al. “Cryo-EM map anisotropy can be attenuated by map post-processing and a new method for its estimation.” International Journal of Molecular Sciences 25.7 (2024): 3959. Read More »
Leonelli, M., & Varando, G. (2024). Learning and interpreting asymmetry-labeled DAGs: a case study on COVID-19 fear. Applied Intelligence, 54(2), 1734-1750. Read More »
Leonelli, M., & Varando, G. (2024). Structural learning of simple staged trees. Data Mining and Knowledge Discovery, 38, 1520–1544. Read More »
Dyballa, Luciano, et al. “Population encoding of stimulus features along the visual hierarchy.” Proceedings of the National Academy of Sciences 121.4 (2024): e2317773121. Read More »
Leonelli, M., Ramanathan, R., & Wilkerson, R. L. (2023). Sensitivity and robustness analysis in Bayesian networks with the bnmonitor R package. Knowledge-Based Systems, 278, 110882. Read More »
Manuele Leonelli and Gherardo Varando (2023). Context-specific causal discovery for categorical data using staged trees. In Proceedings of the 26th International Conference on Artificial Intelligence and Statistics (AISTATS), pp. 8871-8888. PMLR. 25-27 April 2023, Palau de Congressos, Valencia, Spain. Read More »
Ballester-Ripoll, R., & Leonelli, M. (2023). The YODO algorithm: An efficient computational framework for sensitivity analysis in Bayesian networks. International Journal of Approximate Reasoning, 159, 108929. Read More »
Carli, F., Leonelli, M., & Varando, G. (2023). A new class of generative classifiers based on staged tree models. Knowledge-Based Systems, 268, 110488. Read More »
Dyballa, Luciano, and Steven W. Zucker. “IAN: Iterated Adaptive Neighborhoods for manifold learning and dimensionality estimation.” Neural Computation 35.3 (2023): 453-524. Read More »
Leonelli, M., & Riccomagno, E. (2022). A geometric characterization of sensitivity analysis in monomial models. International Journal of Approximate Reasoning, 151, 64-84. Read More »
Manuele Leonelli and Gherardo Varando (2022). Highly efficient structural learning of sparse staged trees. In Proceedings of the 11th International Conference on Probabilistic Graphical Models (PGM), pp. 193-204. PMLR. 5-7 September 2022, Almería, Spain. Read More »
Rafael Ballester-Ripoll and Manuele Leonelli (2022). You only derive once (YODO): Automatic differentiation for efficient sensitivity analysis in Bayesian networks. In Proceedings of the 11th International Conference on Probabilistic Graphical Models (PGM), pp. 169-180. PMLR. 5-7 September 2022, Almería, Spain. Read More »
Ballester-Ripoll, R., & Leonelli, M. (2022). Computing Sobol indices in probabilistic graphical models. Reliability Engineering & System Safety, 225, 108573. Read More »
Cabrera, A., de Diego, D. M., & Vaquero, M. (2024). Approximating Symplectic Realizations: A General Framework for the Construction of Poisson Integrators. arXiv preprint arXiv:2409.04342. Read More »
Garcia-Ferrero, M. A., Gomez-Ullate, D., & Milson, R. (2024). Classification of exceptional Jacobi polynomials. arXiv preprint arXiv:2409.02656. Read More »
Bianchin, G., Vaquero, M., Cortés, J., & Dall’Anese, E. (2024). k-dimensional Agreement in Multi-agent Systems. IEEE Transactions on Automatic Control. Read More »
Precioso, D., Milson, R., Bu, L., Menchions, Y., & Gómez-Ullate, D. (2024). Hybrid search method for Zermelo’s navigation problem. Computational and Applied Mathematics, 43(4), 250. Read More »
Anahory Simoes, A., Colombo, L., de León, M., Salgado, M., & Souto, S. (2024). Euler–Lagrange–Herglotz equations on Lie algebroids. Analysis and Mathematical Physics, 14(1), 3. Read More »
Turilli, Matteo, et al. “ExaWorks software development kit: a robust and scalable collection of interoperable workflows technologies.” Frontiers in High Performance Computing 2 (2024): 1394615. Read More »
Ballester-Ripoll, R. (2024). Computing statistical moments via tensorization of polynomial chaos expansions. SIAM/ASA Journal on Uncertainty Quantification, 12(2), 289-308. Read More »
Ballester-Ripoll, R., Halter, G., & Pajarola, R. (2024). High-dimensional scalar function visualization using principal parameterizations. The Visual Computer, 40(4), 2571-2588. Read More »
Castelló Ferrer, E., Berman, I., Kapitonov, A., Manaenko, V., Chernyaev, M., & Tarasov, P. (2023). “Gaka-chu: a self-employed autonomous robot artist”. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 11583-11589. Read More »
Castelló Ferrer, E., Jiménez, E., Lopez-Presa, J. L., & Martín-Rueda, J. (2022). “Following Leaders in Byzantine Multi-Robot Systems by Using Blockchain Technology”. IEEE Transactions on Robotics. Read More »
Castelló Ferrer, E., Hardjono, T., Pentland, A. S., & Dorigo, M. (2021). “Secure and secret cooperation in robotic swarms”. Science Robotics, 4(29), eaaw3739. Read More »
Galán-Arcicollar, Cristina, et al. “A joint modelling approach for longitudinal patient-reported outcomes and survival analysis.” 38th International Workshop on Statistical Modelling. 2024. Read More »
Galán-Arcicollar, C., Najera-Zuloaga, J., & Lee, D. J. (2024). Patient-reported outcomes and survival analysis of chronic obstructive pulmonary disease patients: a two-stage joint modelling approach. SORT-Statistics and Operations Research Transactions, 155-182. Read More »
Leonelli, M., & Varando, G. (2024). Robust learning of staged tree models: A case study in evaluating transport services. Socio-Economic Planning Sciences, 95, 102030. Read More »
García-García, Fernando, et al. “Obtaining patient phenotypes in SARS-CoV-2 pneumonia, and their association with clinical severity and mortality.” Pneumonia 16.1 (2024): 12. Read More »
Filigheddu, M. T., Leonelli, M., Varando, G., Gómez-Bermejo, M. Á., Ventura-Díaz, S., Gorospe, L., & Fortún, J. (2024). Using staged tree models for health data: Investigating invasive fungal infections by aspergillus and other filamentous fungi. Computational and Structural Biotechnology Journal, 24, 12-22. Read More »
García-García, Fernando, et al. “Reliable prediction of difficult airway for tracheal intubation from patient preoperative photographs by machine learning methods.” Computer Methods and Programs in Biomedicine 248 (2024): 108118. Read More »
García, Ander, et al. “Analysis of local density during football stadium access: Integrating pedestrian flow simulations and empirical data.” Physica A: Statistical Mechanics and its Applications 638 (2024): 129635. Read More »
García-García, Fernando, et al. “Cost-sensitive ordinal classification methods to predict SARS-CoV-2 pneumonia severity.” IEEE Journal of Biomedical and Health Informatics (2024). Read More »
Görgen, C., Leonelli, M., & Marigliano, O. (2022). The curved exponential family of a staged tree. Electronic Journal of Statistics, 16(1), 2607-2620. Read More »
Carli, F., Leonelli, M., Riccomagno, E., & Varando, G. (2022). The R Package stagedtrees for Structural Learning of Stratified Staged Trees. Journal of Statistical Software, 102, 1-30. Read More »
Lattanzi, C., & Leonelli, M. (2021). A change-point approach for the identification of financial extreme regimes. Brazilian Journal of Probability and Statistics, 35(4), 811-837. Read More »
Leonelli, M., Riccomagno, E., & Smith, J. Q. (2020). Coherent combination of probabilistic outputs for group decision making: An algebraic approach. OR Spectrum, 42(2), 499-528. Read More »
Leonelli, M., & Gamerman, D. (2020). Semiparametric bivariate modelling with flexible extremal dependence. Statistics and Computing, 30(2), 221-236. Read More »
Görgen, C., & Leonelli, M. (2020). Model-preserving sensitivity analysis for families of Gaussian distributions. Journal of Machine Learning Research, 21(84), 1-32. Read More »